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Abstract
Emergence of COVID-19 joins a collection of evidence that local and global health are 
influenced by human interactions with the natural environment. Frameworks that simulta-
neously model decisions to interact with natural systems and environmental mechanisms 
of zoonotic disease spread allow for identification of policy levers to mitigate disease risk 
and promote conservation. Here, we highlight opportunities to broaden existing conserva-
tion economics frameworks that represent human behavior to include disease transmission 
in order to inform conservation-disease risk policy. Using examples from wildlife markets 
and forest extraction, we call for environment, resource, and development economists to 
develop and analyze empirically-grounded models of people’s decisions about interacting 
with the environment, with particular attention to LMIC settings and ecological-epidemi-
ological risk factors. Integrating the decisions that drive human–environment interactions 
with ecological and epidemiological research in an interdisciplinary approach to under-
standing pathogen transmission will inform policy needed to improve both conservation 
and disease spread outcomes.
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1 Introduction

Soon after the discovery of SARS-2-COV, COVID-19 became a pandemic event that 
spread worldwide, infected millions of people, and created unprecedented economic 
impact (WHO 2020a; Guan et  al. 2020). Current evidence suggests that COVID-19 
resulted from a zoonotic pathogen “spillover” event—transmission of a pathogen from 
wildlife to humans (Andersen et al. 2020). The majority (~ 60%) of the emerging infec-
tious diseases (EIDs) since 1940 had an animal origin with most of these (> 70%) 
caused by pathogens associated with wildlife (Jones et al. 2008). Although pandemics 
are rare, zoonotic disease incidence and novel spillover events cause frequent and seri-
ous health, social, and economic losses in tropical low and middle income countries 
(LMICs) (Morse et  al. 2012). As COVID-19 spread around the globe, several coun-
tries in Latin America experienced an extreme outbreak of Dengue and other vector-
borne diseases (Lorenz et al. 2020) and the Democratic Republic of the Congo endured 
their eleventh Ebola outbreak since 1976 (WHO 2020b). Because zoonotic spillover 
events occur in human-animal interfaces, policy to address such disease risks requires 
interdisciplinary analysis of the epidemiological, environmental, and human processes 
occurring on the landscape.

Data analyses find that disease emergence and biodiversity loss share common 
anthropogenic drivers: land use change, habitat fragmentation, expansion of the agri-
culture frontier, and wildlife harvest and trade (Patz et  al. 2004; Wolfe et  al. 2005; 
Loh et al. 2015; Huong et al. 2020). Given that people’s decisions are the root of these 
drivers, the choices people make about interactions with the environment influence 
both conservation outcomes and infectious disease risk (Murray and Daszak 2013). In 
many LMICs, human–environment interactions occur during activities that are inte-
gral to daily life and are a function of specific socio-economic and institutional set-
tings (Albers and Robinson 2013; Nielsen et al. 2017). Establishing policy to increase 
conservation and reduce disease risk requires understanding both people’s decisions—
including land use, resource extraction, and market activities—within their context, 
and how environment-human interactions lead to disease risk.

Environment, resource, and development economists explore models and data 
to determine why and how humans interact with the environment in LMICs, which 
informs conservation policy. Here, we review how these economic frameworks cap-
ture—or do not capture—drivers and characteristics of the human–environment inter-
action, while reflecting the natural and socio-institutional settings of LMICs. We then 
propose how modeling frameworks can be expanded to incorporate the disease risk 
posed by that interaction to inform needed socio-enviro-epidemiological research and 
policy analysis, using an iterative process of data collection and modelling in an inter-
disciplinary setting. Finally, we discuss how expanded models can provide insight into 
behavioral drivers of risk and inform design of policy for two general types of patho-
gen transmission pathway from wildlife to humans: direct—contacting a pathogen 
through hunting, marketing, or consumption of wildlife, with an example from Indo-
nesian wildlife markets; and indirect—exposure to pathogens while undertaking liveli-
hood activities, with an example of malaria transmission. Filling this research gap will 
address calls from many conservation and health actors to incorporate human dimen-
sions of disease risk into joint conservation-health policy (Romanelli et al. 2014; Díaz 
et al. 2015; Whitmee et al. 2015; WHO 2015).
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2  Conservation Economics in LMICs: Interactions of People 
with Natural Systems and Wildlife

The effectiveness of conservation policy is dependent on its ability to influence 
human–environment interactions. Conservation economics in LMICs provides both empir-
ical and theoretical models of human behavior that inform conservation policy to address 
anthropogenic causes of biodiversity loss, as called for by conservation scientists (Reddy 
et al. 2017; Dobson et al. 2019). These frameworks recognize that patterns of land use are 
informed by, and inform, decisions of people in LMICs that cause biodiversity loss (e.g. 
Pfaff 1999; Andam et al. 2008; Pfaff et al. 2009; Albers et al. 2019). Both environmental 
and socio-economic characteristics of LMICs inform people’s decisions and interactions 
with their environment and are often critical considerations in conservation policy. Gov-
ernments, large scale land actors, and individual people make decisions that combine to 
determine the pattern of landscapes and land uses. In turn, tropical LMIC people’s land 
use and environmental interaction decisions consider patterns of government investments 
in roads and protected areas, larger scale land users, and agricultural policies (Albers et al. 
2017). Here, we discuss the empirical analyses that identifies drivers of conservation out-
comes, critique their ability to identify policy tools to influence individual decisions, and 
describe existing LMIC models of human-environmental interaction with conservation 
policy levers to form the basis for the next section’s discussion of incorporating disease 
risk in these frameworks.

Investigating deforestation, land use change, fragmentation, and park effectiveness, 
econometric analysis of spatial imagery and GIS datasets identifies correlations between 
physical and socioeconomic characteristics and conservation outcomes (e.g. Pfaff 1999; 
Andam et al. 2008; Pfaff et al. 2009; Busch et al. 2015; Leblois et al. 2017). Roads both 
create fragmentation and encourage follow-on land conversion and fragmentation (Saun-
ders et al. 2002; Freitas et al. 2010), and protected areas and community management alter 
fragmentation (Sánchez-Azofeifa et al. 1999; Southworth et al. 2004; Nagendra et al. 2008; 
Sims 2014). Although such empirical analysis is important for identifying big-picture 
issues and correlations, this style of empirical analysis presents three challenges for policy 
to influence people’s behavior. First, such analysis obscures the incentives driving behav-
ior and considers the actions of people only implicitly, which complicates identification of 
behavioral policy levers. Second, remotely sensed datasets often do not contain informa-
tion about socio-economic and institutional settings that influence behavior, such as which 
forests are effectively managed by community organizations or which villages face costly 
market access (Robinson et al. 2008; Ghate et al. 2009). Third, heterogeneity of cultures, 
landscapes, and other characteristics of individual LMICs make extrapolating empirical 
results from one location to another difficult (Leblois et al. 2017), such as across settings 
with different acceptability of eating primate meat between Muslims and Christians (Nyan-
ganji et al. 2011).

Conservation economics modeling work in LMICs emphasizes the role of the socio-
institutional and ecological settings in which people make decisions on human–environ-
ment interactions (e.g. Gunatileke and Chakravorty 2003; Albers and Robinson 2013). In 
LMICs, many production and labor allocation decisions are influenced by natural environ-
ments, such as agricultural activities and non-timber forest product (NTFP) extraction, 
including hunting (Robinson 2016; Nielsen et al. 2017). Costly or limited market access 
influences decisions about how much to interact directly with natural environments for 
extraction and farming when facing a subsistence need or cash requirement (Robinson 
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et al. 2002; Sills and Abt 2003; Muller and Albers 2004; Ghate et al. 2009). Decisions to 
consume or trade wildlife depend on market access, prices, and opportunity costs (Dama-
nia et  al. 2005; Wilkie et  al. 2005), in addition to other aspects of the household’s pro-
duction function including protecting crops from wildlife (Johannesen and Skonhoft 2004; 
Bulte and Rondeau 2007). Lack of clearly defined or enforced property rights create incen-
tives that result in de facto open access use and habitat degradation (Bulte and Engel 2006; 
López-Feldman and Wilen 2008). Models that incorporate spatial decisions—about extrac-
tion and land use—provide a more explicit representation of the human–environment inter-
actions that drive conservation outcomes and reflect the impact of property rights, com-
munity management, resource density, and market access on those interactions (Robinson 
et  al. 2002, 2008; Albers et  al. 2019). These economic decision models provide a lens 
through which to interpret data correlations and highlight policy levers for steering human 
interactions with the environment. Developing general models of people’s decisions within 
their social and ecological context, augmented with appropriate observation and data, can 
help form context-specific policy that focuses on changing people’s behavior in pro-conser-
vation ways that data analysis identifies as policy priorities.

3  Expanding Models to Better Inform Joint Conservation and Zoonotic 
Disease Policy

Economists, health scientists, and conservation actors alike call for more research and 
policy that simultaneously addresses conservation and disease risk (Salkeld et  al. 2013; 
Civitello et al. 2015; Pattanayak et al. 2017). Often, conservation policy mitigates disease 
risk simply because conservation policy reduces contact between people and natural envi-
ronments and wildlife.1 Deforestation, land use change, and fragmentation all correlate 
with both biodiversity loss and zoonotic disease risk (Patz et al. 2004; Suzán et al. 2008; 
Morand et al. 2019). Ecological models predict the geographic locations where new dis-
eases may emerge or from which wildlife species they may emerge, but, despite including 
demographic variables, these models do not explicitly consider the interactions of people 
with their environment, which is a factor in the risk of zoonotic disease transmission (Allen 
et al. 2017; Olival et al. 2017). That transmission occurs through a combination of environ-
mental, epidemiological, and human behavioral factors: first, human decisions determine 
the characteristics of the ecological landscape; second, the resulting environmental condi-
tions determine the distribution of, and intensity of infection in, reservoir hosts; and third, 
the choice of activity and amount of time allocated to specific activities (hunting, farming, 
harvesting NTFPs) drive the risk of exposure to pathogens (Plowright et al. 2017). As an 
example, the likelihood of mosquito-borne pathogen transmission depends on the abun-
dance of mosquito vectors on a landscape, the pathogen load within the mosquito popula-
tion, the chance that a pathogen-carrying mosquito bites a person, and the probability that 
the pathogen successfully infects the human (Baeza et al. 2017).

1 For example, regulating bushmeat consumption would reduce human contact with wildlife through hunt-
ing, thereby conserving the species and mitigating pathogen spillover risk. Policies that directly target dis-
ease risk, however, do not necessarily create a conservation benefit. For example, a policy to enhance biose-
curity in handling wildlife does not mitigate wildlife hunting beyond increasing costs. Similarly, a policy to 
provide information to people about disease risk in the landscape may induce people to alter their patterns 
of environmental interaction in ways that negatively impact conservation outcomes.
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To depict risks on the landscape, disease ecologists create global emerging infectious 
disease “hotspot” maps that correlate past emerging infectious disease events, demographic 
data, and environmental variables to estimate the spatial relative risk of zoonotic spillovers 
worldwide. These models were developed at a coarse spatial resolution due to the sparsity 
of the data and multi-scale variables (Allen et al. 2017). Human decisions around resource 
use and environmental interactions occur at a finer scale, making those interactions dif-
ficult to represent in this framework despite their critical role in determining the risk of 
disease. To address how humans influence zoonotic disease risk borne from environmen-
tal interactions, these hotspot maps can be combined with economic decision models at 
fine resolution that specify markets and institutions, landscape patterns, and resource use 
in LMICs, and thereby illustrate the decisions behind where and how people overlap with 
pathogen hosts, which influences their pathogen exposure.

Using conservation economics models as a basis for developing policy that addresses 
both conservation and disease risk requires modeling extensions and new information. 
First, because both the amount of time and the locations of human–environment interac-
tions contribute to disease risk within the ecological setting, expanding models of deci-
sions about agricultural expansion, wildlife hunting and marketing, and resource extraction 
to incorporate space and time as decision variables provides a mechanism for character-
izing the disease risk of such actions and for policies to internalize the disease risk into 
decisions. Second, because both the ecological landscape of pathogens and human activi-
ties vary seasonally, economic models at the sub-annual level could identify seasonally 
targeted policies to mitigate disease risk. Third, although empirical analysis signals the role 
of fragmentation in both biodiversity loss and zoonotic disease incidence, little ecological, 
economic, or interdisciplinary research depicts the process of fragmentation in a manner 
that helps define policy tools that influence people’s actions in ways that could limit con-
servation losses and disease risk from fragmentation.

In addition to such extension of modeling frameworks to address disease risk in the 
LMIC context, we propose an interdisciplinary and iterative process of on-the-ground 
observation; economic, behavioral, and epi-ecological modeling to guide further field 
work; and data collection in a standardized manner to inform further research and policy 
efforts. That iterative process might begin with observation, both finding correlations in 
data and through stakeholder input; followed by economic analysis of models of human 
decisions parameterized with empirically-relevant values to identify the critical mecha-
nisms and drivers of the human—environment interaction and potential for policy; fol-
lowed by prioritization of ecological or economic data collection to form policy in specific 
settings; and an iteration back to broader data analysis to discern policy impact. Such inter-
disciplinary analysis incorporating economic modeling will improve our ability to define 
factors that influence people’s decisions involving interaction with the environment and the 
related disease risk. In the next two sub-sections, we discuss how to extend economic mod-
els of environmental interactions in LMICs to incorporate disease risk in settings in which 
the risk is directly related to the actions taken by people, such as wildlife marketing, and in 
settings in which the disease risk derives indirectly or incidentally from the environment, 
such as siting livestock operations at the forest margins.

3.1  Modeling Direct Interactions with Disease Risk

The trade in legal and illegal wildlife is worth billions of dollars, with hundreds of mil-
lions of animals and plants traded globally (Fukushima et al. 2020). Wildlife trade creates a 
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direct human-wildlife interaction through intentional contact with the live or dead wildlife 
species at any point along the supply chain—from hunting to trading and selling to con-
sumption (Daszak et al. 2000; Kruse et al. 2004; Breed et al. 2006). For example, SARS-
COV and SARS-2-COV are linked to wildlife trade in China, HIV to primate bushmeat 
hunting, monkeypox virus to the exotic pet trade, and H5N1 and H7N9 to domestic poul-
try (Karesh et al. 2005; Gilbert et al. 2014; Andersen et al. 2020). Capturing, raising, and 
transporting live animals brings many individuals into close proximity, creating opportuni-
ties for inter- and intra-species pathogen transmission and potentially spillover to humans. 
For example, SARS originated in wet markets where the pathogen spilled over from bats 
to civets (Li et  al. 2005), and SARS-2-COV may have originated with pangolins as an 
intermediary host (Andersen et al. 2020). In these cases, the lack of regulations and poor 
biosafety at nodes on the supply chain increased the risk for vendors and purchasers further 
downstream.

As the starting point of the wildlife supply chain, hunting activity that supplies markets 
poses a risk of disease spread as hunters interact with live animals (Wolfe et  al. 2005). 
Given that interaction, the drivers of hunting decisions can be targeted by policy to reduce 
disease risk and promote conservation. Households face tradeoffs in their decisions to 
allocate time or land between agriculture and wildlife harvesting (Bulte and Horan 2003). 
When these households also consume harvested wildlife, the income elasticity of demand 
for bushmeat drives the response to an alternative livelihood policy, identifying this elas-
ticity as priority data (Damania et al. 2005). Response to policy may also differ when the 
hunted species are considered a nuisance to agriculture and are taken to defend crops as 
well as for consumption or sale. This dual purpose of hunting affects the tradeoffs hunters 
face when reacting to policy (Johannesen and Skonhoft 2004; Bulte and Rondeau 2007).

Empirical analyses find variation in the response of hunters to the relative costs of 
hunting in an environment, such as park proximity; labor tradeoffs with other activities, 
particularly livestock; and household characteristics (e.g. Brashares et  al. 2011; Foerster 
et  al. 2012; van Velden et  al. 2018). Hunters may respond to the increased opportunity 
cost of hunting by switching to more efficient hunting techniques and more valuable spe-
cies, which does not address disease risk and presents a conservation risk when those valu-
able species are protected species (Damania et al. 2005). When hunters cannot discriminate 
in the species they hunt, enforcement policies may have unintended consequences around 
consumption of protected species (Robinson 2008). Hunters’ decisions rarely include dis-
ease risk mitigating activities, perhaps due to a lack of knowledge of the risk the animal 
presents (Harrison et al. 2011).

Policies to alter incentives for bushmeat hunting and consumption include enforcement 
of illegal hunting, community-based conservation, and alternative or additional livelihoods 
and protein sources (Foerster et al. 2012; van Velden et al. 2018). Models predict the out-
comes of these policies, showing in what circumstances alternative livelihoods, enforce-
ment, and expanding protected areas lead to negative conservation outcomes (Damania 
et  al. 2005; Johannesen 2007; Robinson 2008). Policies that reduce hunting itself create 
conservation and disease risk mitigation but can impose economic burdens on hunters and 
demand for wildlife/bushmeat continues to create incentives for hunting. Policies that pro-
mote safer hunting practices, information about disease risk, and incentives to hunt lower 
risk species directly alter the disease risk within the context of ongoing hunting.

Between the hunters and the final markets, traders, middlemen, and sellers in the wild-
life/bushmeat supply chain serve a crucial role in LMICs by providing access to markets, 
and also face disease risk. Yet, few economic models and empirical analyses include the 
role of these other actors, which misses additional points of human-disease interaction 



Disease Risk from Human–Environment Interactions: Environment…

1 3

that could respond to policy (Bowen-Jones et  al. 2003; Cowlishaw et  al. 2005; Kamins 
et al. 2011; Nielsen et al. 2014; Bachmann et al. 2019; Van Vliet et al. 2019; Latinne et al. 
2020). Middlemen with sufficient market power can pay lower prices to hunters than mid-
dlemen operating competitively and prevent the system from reaching the open access out-
come (Tháy et al. 2019). This role of middlemen is relevant in modeling wildlife supply 
chains and the resulting disease externality because they drive two elements of the disease 
risk: the amount of wildlife being harvested and the number of people directly contacting 
the wildlife. All points of human-wildlife contact along the supply chain represent areas 
of zoonoses spillover risk and possible opportunities for changing human behavior with 
policy levers.

Both local and global consumers contribute to the demand for wildlife and bushmeat 
(McNamara et al. 2019; Fukushima et al. 2020). Local demand in LMICs is largely driven 
by wealth, nutritional needs, and prices (Wilkie et al. 2005; Fa et al. 2009; Godoy et al. 
2010). Analysis of demand across countries finds a range of income elasticities and price 
elasticities for bushmeat (Wilkie and Godoy 2001; East et  al. 2005; Wilkie et  al. 2005; 
McNamara et  al. 2019). Policy can be aimed at manipulating the prices of bushmeat to 
reduce demand, and thereby reduce disease risk to consumers and the supply chain by 
reducing supply, but variation across settings in demand response imply a need for context-
specific information.

3.2  Example: Sulawesi Wildlife Markets Supply Chain

Here we demonstrate the role of balancing observation and data collection with modeling 
of people’s decisions around their interaction with wildlife to inform conservation and dis-
ease policy. The wildlife markets in North Sulawesi, Indonesia sell a variety of wildlife and 
domestic animals, including bats like large flying foxes, which could potentially lead to 
disease spillover events. Bat sales in these markets have been increasing for decades (Clay-
ton and Milner-Gulland 2000; Lee et  al. 2005; Latinne et  al. 2020) and concerns about 
declining bat populations and potential pathogen spillovers led to calls for policy to reduce 
bat harvesting (Sheherazade and Tsang 2015; Latinne et  al. 2020). Latinne et  al. (2020) 
conducted stakeholder interviews with hunters, local collectors, middlemen, and vendors, 
and collected market data during 2016–2019 to describe the supply chain and estimate 
quantities of marketed bats. An important feature of these markets is that regional resource 
use and cultural differences between geographic regions create the current structure of the 
supply chain. Demand for bat protein stems from Christians in northern Sulawesi, where 
hunting has historically occurred and reduced bat populations. Current supply is trans-
ported from provinces in southern Sulawesi, which are predominantly Muslim and do not 
consume bats, and therefore have larger populations to hunt (Clayton and Milner-Gulland 
2000; Lee et  al. 2005; Sheherazade and Tsang 2015). Hunters sell the bats to either to 
local collectors or directly to middlemen, who transport the bats to the markets in the north 
(Latinne et al. 2020).

By identifying the actors and collecting data on revenues and costs, Latinne et al. (2020) 
identifies two salient characteristics of this market for policy development—hunters oper-
ate under open access conditions and middlemen transport animals to markets, factor-
ing transportation costs into prices. Combining observations, stakeholder interviews, and 
data collection, followed by modeling the entire supply chain, highlights specific incen-
tives to target in order to conserve bats and mitigate pathogen spillovers from wildlife. 
The construction of the Trans Sulawesi Highway in 1980 allowed vendors to travel further 
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to collect wildlife and expanded the region over which bat harvest creates conservation 
losses and disease risk (Clayton and Milner-Gulland 2000). Policies such as highway tolls 
that increase transportation costs to middlemen could reduce the volume of bats traded 
because hunters cannot readily access markets. In this case, data collection on the elastici-
ties of demand for bat meat would be a critical piece of information to collect to determine 
whether the middlemen may pass on the price increase to consumers. Second, policies 
aimed at providing alternative income sources to hunters could increase middlemen costs 
and reduce both harvest and disease risk. The policy could also increase the practice of 
middlemen transporting hired hunters to harvest the area, and disease risk and conservation 
concerns would continue (Latinne et al. 2020). To counter coordination between middle-
men and hunters, policies that provide incentives for people in southern Sulawesi to both 
forego hunting and protect bats from hunting could prevent these migrant hunters from 
accessing bat habitat. Despite the valuable ecosystem services provided by bats, includ-
ing fruit pollination, bats are generally considered a nuisance species by fruit farmers on 
Sulawesi, which limits the farmers’ interest in providing such incentives to bat hunters 
(Banack 1998; Latinne et al. 2020). Closer collaboration between conservation and health 
organizations could support payments for ecosystem services to potential bat hunters to 
discourage bat harvest and disease risk while promoting bat conservation for bat pollina-
tion and seed dispersal services.

The iterative process of field work and modeling the supply chain, informed by stake-
holder interviews, establishes a fuller picture of the disease externality risk at each contact 
point and the decisions of all actors and forms the basis for policy analysis aimed at reduc-
ing human-wildlife contact’s disease risk and promotes conservation.

3.3  Modeling Indirect Interactions with Disease Risk

Some risk of disease arises through frequent human interactions with the environment in 
which contact with wildlife hosting a pathogen is incidental or an unintended consequence. 
These types of environmental interactions tend to drive persistence of endemic infectious 
diseases. For example, while harvesting fuelwood or other NTFPs, individuals increase 
their exposure to arthropods or non-target wildlife species that are carriers of infectious 
pathogens like malaria and yellow fever (Barros and Honório 2015). In southeast Asia, 
pathogen transmitting mosquito species are found in greater abundance near deforested 
land and oil palm plantations (Young et  al. 2020). The expansion of agricultural land, 
in particular oil palm and rubber in Liberia and sugar-cane in Bolivia, has increased the 
frequency of contact between plantation workers and rodents that are attracted to these 
environments, increasing thus the risk of hemorrhagic fevers (e.g. Lassa fever in Africa 
or Ordog Fever in South America) (Olugasa et al. 2014; Patterson et al. 2014; Gibb et al. 
2017). The decision to site livestock operations near forest habitat increases the likeli-
hood of interactions and conflicts between livestock and potential wildlife reservoirs for 
pathogens. For example, the emergence of Nipah virus in Malaysia was directly linked to 
agricultural intensification. Pig farms were established in close proximity to forest; farm-
ers planted fruit trees for additional income with the unintended result of attracting bats, 
which are natural reservoirs of Nipah virus (Epstein et al. 2006). In each of these examples, 
the risk of disease is endogenous in the decision to interact with the environment, but the 
risk is incidentally related to that decision. In these settings, the context of when, where, 
and how individuals interact with the environment plays an important role in the risk of 
disease.
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Indirect interactions with disease risk are driven by choices individuals make about how 
and where they spend their time with respect to activities such as subsistence farming, col-
lecting NTFPs, mining, or working in the agricultural sector. These choices affect the land 
covers, habitat degradation, and wildlife with which individuals interact. As an example of 
a modeling opportunity, the ecological literature indicates that disease risk is greatest in 
altered or degraded natural habitats (Murray and Daszak 2013), which could link to peo-
ple’s decisions as a function of resource quality. Modeling the choice of labor allocation 
within a particular socio-institutional setting explicitly allows for representing trade-offs 
of allocating time to specific activities across land covers. Labor allocation results can be 
combined with ecological models or data on vector or pathogen abundance across land-
scapes to determine individual pathogen exposure risk. The setting’s institutions can also 
influence disease risk. For example, introducing markets for fuelwood substitutes alters 
the labor allocation to that environmental interaction and exposure to pathogens. Simi-
larly, establishing community property rights in forests that have been degraded by over-
extraction in de facto open access mitigates disease risk by reducing pathogen prevalence 
and reducing extraction within the forest. With more contextual information about activity 
choices from socio-economic field work, the daily and seasonal timing of activities can 
further inform infection risk. For example, if a wildlife species has crepuscular activity and 
agricultural work is conducted in the cool early morning, high vector activity and human 
presence on the same landscape may create a high-risk setting for pathogen transmission 
(Vittor et al. 2006).

Policy to reduce the risk of disease transmission through indirect interactions can take 
one of two approaches, either limiting resource extraction or limiting exposure to path-
ogens in risky environments. Limiting the extent of extractive industries can simultane-
ously address conservation and health policy goals, but limiting opportunities for economic 
activities can result in illegal resource extraction, and disease incidence is often greater 
around illegal resource extraction operations (Castellanos et al. 2016). To limit extractive 
industries would therefore require creating alternative (legal) economic opportunities or 
payment for ecosystem service programs (Cárdenas 2017) and monitoring and enforcing 
regulations. Alternatively, policies can be developed using information about which spe-
cific actions increase human contact with the pathogen, and therefore create the greatest 
risk of pathogen transmission. For example, if oil palm plantation workers live near fields, 
increasing their risk of exposure to rats and Lassa fever, housing can be sited in locations 
farther away from the source of risk. Finally, disseminating information about how specific 
activities increase disease risks may be a viable policy to mitigate pathogen transmission.

3.4  Example: Malaria Risk and Labor Allocation Decisions Across Time and Space

Here, we explore an example of how leveraging empirical findings and expanding exist-
ing models, in combination with socio-economic and environmental observations, can 
inform policy to reduce malaria risk. A majority of the empirical disease research exam-
ines disease incidence from incidental interaction between humans and disease vectors 
stemming from economic activities such as land use change. Ecological research sug-
gests that deforestation opens the forest canopy, which modifies moisture and sunlight 
that reaches the ground and creates ideal breeding conditions for mosquitoes, which can 
transmit malaria (De Castro et al. 2006; Vittor et al. 2006, 2009). Simultaneously, defor-
estation reduces the abundance of species that feed on mosquitoes, amplifying both the 
density of the vector and pathogen (Baeza et al. 2017). In the Amazon region of South 
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America, the malaria vector species Anopheles sp. occurs in greater abundance at forest 
edges and agricultural landscapes and in lower densities in forests and protected areas; 
Anopheles abundance and diversity varies across land cover types (space); and Anoph-
eles feeding activity varies by time of day and season (Stefani et al. 2013; Bauch et al. 
2015). These findings imply that where and when people choose to perform activities is 
important in exposure to pathogens and disease risk. Combining evidence from the nat-
ural sciences with economic models that explicitly represent when and where individu-
als spend time between, for example, collecting NTFPs in a protected area and working 
in agricultural fields can provide insight into how incentives shape risk of infectious 
disease.

Existing econometric studies relating deforestation to malaria incidence have been 
conducted for South America, Africa, and Asia, and rely on geospatial datasets in com-
bination with either regional epidemiological data (Valle and Clark 2013; Hahn et  al. 
2014; Terrazas et al. 2015; Garg 2019) or individual health survey data (Berazneva and 
Byker 2017; Bauhoff and Busch 2020). While the majority of studies find either positive 
correlation or causation between deforestation and disease incidence, these results are 
not consistent across all published works (e.g. Valle and Clark 2013; Bauhoff and Busch 
2020). Although the increasing availability of geospatial and large datasets provides 
insight into global trends and hotspots for diseases, how people’s decisions contribute 
to the risk of disease spread cannot be discerned from data at the parcel or pixel unit of 
analysis. As a result, the policy implications and ability to generalize results from these 
empirical studies are limited to identifying specific demographics that can be targeted 
for malaria prevention and control programs and broad statements about curbing rates 
of deforestation.

As one possible starting point, Albers et  al. (2019)’s model of labor time allocation 
between wage labor and NTFP extraction incorporates both an individual spatial extrac-
tion path decision and an aggregate spatial equilibrium of NTFP extraction in a forest. 
That framework could be expanded to replace wage labor with agriculture, to further refine 
the timing and seasonality of decisions, and to reflect a range of socio-institutional and 
ecological settings. This modeling framework can be validated and parameterized using 
stakeholder interviews and observational data. Then, overlaying this economic spatial land 
use model with ecological models that determine mosquito bite rate probabilities in agri-
cultural land, fringe forest, deeper forests, and protected areas allows the model’s solution 
to define the malaria transmission risk facing each individual based on their where and 
when they decide to perform specific activities. Analyzing the spatial pattern of resource 
extraction decisions as a function of ecological, socio-institutional, and market settings can 
reveal the characteristics of settings and individuals that drive malaria risk and provide 
insight for policy development. Simultaneously considering the daily and seasonal timing 
of human and vector activity (mosquitoes are most active at dawn and early evening, and 
most abundant around rainy seasons (De Castro et al. 2006)) can avoid creating policies 
that unintentionally increase pathogen transmission risk. For example, creating alternative 
fuel sources may decrease the total time spent in forests extracting fuelwood but focus that 
reduced time in NTFP extraction in fringe forests that have higher mosquito abundance, 
thereby increasing disease risk. Joint consideration of the impact of policies on conserva-
tion and health outcomes can avoid perverse incentives and unintended outcomes. Supple-
menting sensitivity analysis with stakeholder observations and data to describe particular 
settings produces stronger understanding of the drivers of decisions that create the disease 
risk and identifies the information and data necessary to provide the right policies for the 
ecological and institutional setting, across seasons.
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4  Call for Next Steps

Environment, resource, and development economists are particularly well-suited to 
developing frameworks of people’s decisions to interact with their environments; and 
such models can identify policy levers that alter people’s actions in ways that promote 
both conservation and disease risk mitigation. We suggest three guides for policy-rele-
vant research:

Data analysis to identify correlations between land/resource characteristics and dis-
ease risk is necessary and important but not sufficient to guide joint conservation and 
disease-risk mitigating policy. Empirical analysis that defines correlations but is not 
specific to people’s decisions does not provide information about how human–environ-
ment interactions affect conservation or disease spread, which implies that policy levers 
are difficult to identify below generalities, such as “slow deforestation,” “limit fragmen-
tation,” and “close wildlife markets.”

Modeling people’s decisions to interact with natural resources in a LMIC setting, 
while using an iterative process that incorporates context and data, enables policy 
design based on people’s decisions and disease spread mechanisms that can be modified 
for specific settings. Because empirically-informed models characterize decisions about 
interactions with the environment, they can be used to identify how people react to poli-
cies that drive both conservation and disease risk outcomes. In the absence of detailed 
data at every site of conservation and disease policy interest, general models can pri-
oritize particularly important data collection to enable the model’s application in other 
eco-institutional settings.

Although economic models of people’s decisions to interact with the environment are 
important for defining conservation-disease policy, interdisciplinary research with ecolo-
gists and epidemiologists is necessary to accurately reflect the mechanisms of disease 
spread that matter for policy. The risk of disease spread is a function of people’s choices 
and of how those choices lead to pathogen exposure, which implies that economic models 
must be paired with data and models of those disease risks. Economic models of human-
resource interaction that differentiate across choices of locations and time spent, and across 
seasons, may be necessary to characterize human infection risk. In turn, economic policy 
analysis can prioritize further research into ecological mechanisms that drive risk in spe-
cific environments.
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