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Human disturbance increases coronavirus prevalence
in bats
Vera M. Warmuth1*†, Dirk Metzler1†, Veronica Zamora-Gutierrez2*†

Human land modification is a known driver of animal-to-human transmission of infectious agents (zoonotic
spillover). Infection prevalence in the reservoir is a key predictor of spillover, but landscape-level associations
between the intensity of land modification and infection rates in wildlife remain largely untested. Bat-borne
coronaviruses have caused three major disease outbreaks in humans: severe acute respiratory syndrome
(SARS), Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19). We statistically link high-
resolution land modification data with bat coronavirus surveillance records and show that coronavirus preva-
lence significantly increases with the intensity of human impact across all climates and levels of background
biodiversity. The most significant contributors to the overall human impact are agriculture, deforestation,
and mining. Regions of high predicted bat coronavirus prevalence coincide with global disease hotspots, sug-
gesting that infection prevalence in wildlife may be an important factor underlying links between human land
modification and zoonotic disease emergence.
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INTRODUCTION
There is now little doubt that human land modification is a major
driver of infectious diseases in humans that have an origin in
animals (“zoonoses”) (1–3). This means that animal-to-human
transmissions of infectious agents (“zoonotic spillover”) occur
more frequently in human-modified habitats than in less disturbed
areas. At the most fundamental level, spillover is a function of path-
ogen prevalence in the reservoir, contact rate between reservoir, and
recipient host and the likelihood of infection after contact (4). A
recent study could show that animal species capable of harboring
zoonotic agents are more abundant in human-modified versus
less modified habitats, suggesting that land modification increases
contact rates between humans and zoonotic hosts (5).

Land modification has also been suggested to increase the like-
lihood and severity of infection in wildlife (3). In particular, it is
thought that the degradation and fragmentation of habitats that
often accompany human land modification expose animals to pro-
longed stress as they adapt to the loss or redistribution of resources
(e.g., food, sleeping/roosting sites, andmates) (3). The immunosup-
pressive effects of chronic stress in mammals are well known (6),
and there is increasing evidence for human disturbance causing
physiological stress in wild animals (7–10), yet few studies have ro-
bustly linked anthropogenic stressors with infection prevalence in
wildlife across large spatial scales (3).

In the past 20 years, zoonotic coronaviruses have caused three
major disease outbreaks in humans: severe acute respiratory syn-
drome (SARS), Middle East respiratory syndrome, and coronavirus
disease 2019 (COVID-19) (11, 12). All three of these outbreaks
started with spillover from bats to other animals/humans (12),
making the Coronaviridae a family of considerable zoonotic

concern. As the evolutionary reservoir of α and β coronaviruses
(13), bats (order Chiroptera) play an important role in the
ecology of coronavirus spillover (14). Understanding how human
land modification influences coronavirus infection dynamics in
this important reservoir is consequently vital to managing spillover
risk.

Here, we investigate the effect of human land modification on
the prevalence of coronavirus infection in bats by statistically
linking high-resolution spatial datasets of global anthropogenic
stressors (15) with coronavirus infection data from worldwide
bats extracted from the scientific literature.

RESULTS
Of the 151 studies retained for full-text review, only 74 studies met
our eligibility criteria. The most common reason for exclusion was a
lack of information on the geographic origin of samples (n = 37),
followed by pooling of data from individuals sampled over a large
geographic area (>50 km, n = 16) and pooling ofmaterial frommore
than one individual (n = 15) (table S1). Our final dataset contains
coronavirus infection/noninfection data for 26,723 bats from 309
species, representing 15 families and 111 genera (table S2). Ob-
served coronavirus prevalence shows considerable geographical
variation, ranging between 0 and 100% [global mean: 9.61%; 95%
confidence interval (CI): 2.25, 59.78] among the n = 432 sample lo-
cations included in our dataset (Fig. 1 and fig. S1). Extensive vari-
ation, both across space and time, is common in viral diseases and is
likely due to the large number of factors influencing their occur-
rence (16–18). To test the hypothesis that human land modification
(human impact hereafter) is a significant factor underlying the
spatial patterns that we observe, we modeled the relationship
between infection presence and prevalence and quantitative esti-
mates of global human land modification using zero-inflated
mixed-effects logistic regression models (19, 20). We used the
contemporary human land modification dataset by Theobald
et al. (15). This dataset provides estimates of the degree of human
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modification (H ) for ~2017 and includes 14 anthropogenic stress-
ors from five categories (Supplementary Text and fig. S2).

We first tested the effect of overall human impact (fig. S2A) at
both 10-km2 (H10) and 50-km2 (H50) resolution. After accounting
for all confounders (see Materials and Methods), H10 showed a sig-
nificant effect on coronavirus prevalence (Wald test, P = 0.00078),
but not presence (Wald test, P = 0.43; Table 1). At the global level,
i.e., at an average sampling locality, the predicted probability of co-
ronavirus presence in wild bats is high (mean, 0.72; SE, 0.14;
Fig. 2A), and prevalence increases with the intensity of human
impact (Fig. 2B). Very similar results were obtained for analyses
using H50 instead of H10 (table S3).

Visualization of the model predictions for coronavirus preva-
lence shows global regions where coronavirus spillover from bats
is most likely to occur (Fig. 3 and fig. S3). Some of the coronavirus

prevalence hotspots predicted by our model, notably Western
Europe, East Asia, and India, closely coincide with previously iden-
tified hotspots of zoonotic disease emergence in humans, which
have also been unambiguously linked to human-induced drivers
(21–23). The spatial overlap of global disease hotspots and bat co-
ronavirus prevalence hotspots in regions under substantial human
pressure suggests that increased infection prevalence in wild
animals may be a central outcome of human land modification
and an important factor underlying links between human disturb-
ance and zoonotic disease emergence (3).

The 14 stressors contributing to the overall measure of human
impact can be grouped into five major categories (15): agriculture
and deforestation (“Ag”), intrusions and pollution (“In”), transpor-
tation (“Tr”), energy production (“En”), and urban and built-up
(“Bu”) (fig. S2, A to F). To test which stressor(s) have the biggest

Fig. 1. Geographic origin of coronavirus surveillance data included in our dataset. Observed prevalence (±95% CI) in wild bats averaged over continents. Raw data
are in table S2.

Fig. 2. Global predicted effect of overall human impact H10. Predicted probability of coronavirus presence (A) and (B) prevalence (conditioned on presence) for an
average locality. Dashed lines show 95% confidence ranges. Note that human impact was modeled at a spatial resolution of 10 km2.

Warmuth et al., Sci. Adv. 9, eadd0688 (2023) 31 March 2023 2 of 8

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on A

pril 05, 2023



effect on bat coronavirus prevalence, we fitted five additional
models to our data. In each of these models, we replaced H10 as
explanatory variable for conditional prevalence by one of these
five stressor types at a 10-km2 spatial resolution. After multiple-
testing correction, only Ag10 and En10 had significant positive
effects on conditional prevalence (Wald test, Bonferroni-Holm cor-
rected P < 0.0002 for both Ag10 and En10). Additional testing con-
firmed that these two stressor types drive the effect of overall human
impact (see Materials and Methods).

Human landmodification often interacts with climate and/or bi-
odiversity in its effect on pathogen transmission and zoonotic
disease emergence (22, 24, 25). We explored the predicted effect
of human impact on bat coronavirus prevalence for the different
climate regions and levels of mammal species richness in our
dataset (Fig. 4A and fig. S4). We find that higher mammal species
richness is associated with lower coronavirus prevalence in all
climate regions and across all levels of human impact (Fig. 4B and
fig. S5); however, we note that this effect is not strong enough to
draw definitive conclusions about a potentially beneficial role of
high background mammal richness on coronavirus prevalence
in bats.

The best-fitting model, which allows for a random effect of host
species, explained the data significantly better than a model in
which this species-level effect was replaced by a genus-level effect
(analysis of deviance, P < 2.2 ×10−16). Tests for residual phylogenet-
ic signals at higher taxonomic levels were not significant. As the pre-
ferred bat hosts for SARS-like coronaviruses (26) and the likely

reservoir for the SARS–coronavirus 2 (CoV-2) progenitor (27),
the family Rhinolophidae (horseshoe bats) warrants particular at-
tention. Focusing on South and Southeast Asia as the current diver-
sity hotspot for rhinolophid hosts of SARS-like coronaviruses
(subgenus Sarbecovirus) (28), we asked whether the Rhinolophidae
have higher rates of coronavirus infection than bats from other co-
distributed families. We compared predicted coronavirus preva-
lence among bat species in our dataset whose ranges are restricted
to South and Southeast Asia (table S4) and find no consistent
pattern of elevated coronavirus prevalence in the family Rhinolo-
phidae (Fig. 5, Rhinolophidae in red). While some rhinolophid
species had relatively high predicted prevalence, the two species
considered the most likely sources of the SARS-CoV-2 progenitor
—Rhinolophus pusillus and Rhinolophus affinis (27, 29, 30)—
ranked 46 and 26, respectively, among the 64 species included in
this analysis (table S4). Predicted prevalence was also comparatively
low for Rhinolophus malayanus (rank 57; table S4), another rhino-
lophid species that has been proposed as a potential reservoir of the
SARS-CoV-2 progenitor (29).

DISCUSSION
Our findings show that land modification increases infection prev-
alence in the global bat population and that this effect appears to be
driven by activities that reduce available bat habitats, food sources,
and roosting spaces. In a recent review, deforestation and agricul-
ture were identified as the top two most important anthropogenic
threats to global bat diversity, each directly affecting more than 50%
of threatened bat species (31). Globally, forests are the most impor-
tant habitats for bats. The large effect of stressors in the category
agriculture and biological harvesting of forests (Ag) likely reflects
the loss of important forest habitats either directly through
logging or through conversion to agricultural lands. Agricultural
practices such as the use of insecticides or pest-resistant crop vari-
eties additionally reduce foraging resources for insectivorous bats
(32). The significant effect of stressors in the category energy pro-
duction and mining (En) may reflect the destruction of both above-
ground foraging habitats and subterranean roosting places as a con-
sequence of mining activities and other means of energy production
including wind turbines. Wind turbines not only cause high rates of
mortality (33) but also further reduce available foraging habitat for
bats shown to actively avoid foraging near them (34).

The destruction and/or reduction of key resources may expose
bats to physiological stress (3). The immunosuppressive effects of
chronic stress are well known (6), and mounting evidence shows
that human disturbance is a source of chronic stress in wild
animals (7, 10, 35). In bats, stress, including ecological stress, has
been linked to (re)activation of latent viruses and increased viral
shedding (36–38). By revealing a significant association between an-
thropogenic stressors and pathogen prevalence in a major viral res-
ervoir, our results suggest that ecological stress is a major factor
linking human land modification and zoonotic disease emergence.

We found no evidence for consistently higher coronavirus prev-
alence in horseshoe bats (family Rhinolophidae) compared to other
bat families. In particular, the three species that are thought to be
the most likely reservoirs for the progenitor of SARS-CoV-2,
which crossed into the human population on more than one occa-
sion (11), have comparably low predicted prevalence (table S4). This
result is consistent with the idea that additional mechanisms not

Table 1. Model coefficients for the zero-inflated binomial logistic
regression generalized linear mixed model. Shown are the results for
human impact at 10-km spatial resolution (H10). Coefficients for the same
model but using human impact at 50-km spatial resolution are presented in
table S3. Note that, for the zero-inflation models, larger values increase the
probability of the absence of infection.

Conditional model fixed effects Estimate P value (Wald test)

Intercept −2.67 1.93 × 10−07

H10 0.449 0.00078

Richness −0.00047 0.86

Absolute value of latitude 0.00779 0.49

Conditional model random effects SD

Climate 0.370

Species 0.967

Study 1.06

Zero-inflation model fixed effects Estimate P value (Wald test)

Intercept −0.776 0.428

Richness −0.00026 0.965

Absolute value of latitude −0.00665 0.75

Zero-inflation random effects SD

Climate 0.297

Species 0.617

Genus 0.356

Study 1.191
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addressed in our study determine the probability of spillover along-
side pathogen prevalence in donor hosts—bat or otherwise (39).
Central among these will be mechanisms that increase the rate of
contact between donor and recipient hosts (4). Wildlife wet
markets likely played a central role in the outbreaks of both SARS
(2002–2004) and COVID-19 (40, 41). The trading of animals in
general and wet markets in particular brings species that would oth-
erwise hardly meet into close contact with one another and with
humans. Already 10 years ago, the global wildlife trade involved
up to one billion direct and indirect contacts among wildlife,

humans, and domestic animals (42), and increasing evidence sug-
gests a strong link between wildlife trade and zoonotic disease
risks (43).

Overall, our analysis likely provides rather conservative estimates
of coronavirus prevalence in wild bats because molecular assays de-
signed to target specific lineages or strains (e.g., SARS-related coro-
naviruses; subgenus Sarbecovirus) might have a lower sensitivity to
detect more distantly related species in this large and diverse family.
Conversely, pan-coronavirus assays, another frequently used type of
assay, may have overall lowered sensitivity. On the other hand, two

Fig. 3. Predicted coronavirus prevalence in worldwide bats. Heatmap of predicted coronavirus prevalence conditioned on virus presence. Areas with insufficient data
for extrapolation are indicated in white.

Fig. 4. The combined effects of human impact, climate, andmammal species richness on coronavirus prevalence in bats. (A) Geographical distribution of mammal
species richness (color gradients) in warm-temperate (purple), cool-temperate (blue), tropical (yellow-brown), and subtropical (red) climates. (B) Predicted relationship
between human impact and coronavirus prevalence (%) for average bat species in warm-temperate (top left), cool-temperate (top right), tropical (bottom left), and
subtropical (bottom right) climates, and for low (10; light color), intermediate (60; intermediate color), and high (160; dark color) mammal species richness. Dashed
lines show 95% confidence ranges. Note that predicted prevalence is conditioned on virus presence.
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sources of bias could result in an overestimation of prevalence: (i) A
publication bias toward studies reporting high coronavirus preva-
lence could lead to an overestimation of overall coronavirus preva-
lence. The influence of this type of bias is likely minor, as 68 of the
74 studies included in our analysis (92%) report infection data from
multiple species, localities, and/or time points. Hence, these data-
sets are characterized by a predominance of low or zero prevalence
values and are therefore unlikely to be biased toward high preva-
lence values (table S2). (ii) A publication bias toward studies explic-
itly investigating and finding a significant effect of human land
modification on coronavirus infection in bats could potentially
lead to an overestimation of the effect of human impact on preva-
lence. This form of publication bias is also unlikely, as the 74 studies
contributing data to our analyses address a diverse range of research
questions with only a single study (study ID 26; table S1) explicitly
investigating the influence of human disturbance on coronavirus
infection in bats (and finding no effect).

Our predictions (Fig. 3 and fig. S3) take into account local values
for climate, mammalian species richness, latitude, and human
impact, but not other geographic characteristics or the composition
of the local bat fauna. Bat species occurring in areas of high predict-
ed prevalence may have adapted to local conditions, including the
factors that we model explicitly, and be less susceptible to corona-
virus infection than predicted. Fitting a model that takes into
account the composition of the local bat fauna or adaptation to
local conditions was not reasonably possible with the available
data, given that our simpler model already returns predicted prev-
alence estimates with relatively broad CIs. These uncertainties

notwithstanding the effect of human impact on coronavirus preva-
lence in bats are significant, suggesting that landmodification drives
zoonotic disease emergence through at least two mechanisms: by
increasing infection prevalence in the reservoir (this study) and
by increasing contact between the reservoir and recipient hosts,
human, or other (5).

To predict and mitigate spillover risk of potential zoonotic path-
ogens, our findings emphasize the necessity to monitor not only
their presence but also their prevalence in wildlife populations.
Our analyses reveal that hotspots of coronavirus prevalence coin-
cide with regions under intense human pressure, suggesting that
prevalence data may become increasingly important as human
impact expands. Our results also identify a handful of regions,
notably including the Eastern United States and India, where in-
creased surveillance efforts may be especially critical.

MATERIALS AND METHODS
Experimental design
In the present study, we investigate the effect of human land mod-
ification on coronavirus presence and prevalence in bats. To do so,
we statistically link high-resolution spatial datasets of anthropogen-
ic stressors (both individual stressor categories and their cumulative
effect) with global coronavirus surveillance records using zero-in-
flated mixed-effects logistic regression models (19, 20).

Literature review
We identified potentially relevant studies from Web of Science with
the topic search terms defined as ((coronavirus*) AND (preva-
lence*) AND (bat* OR Chiroptera)). This literature search was
first conducted in May 2020 and repeated in September 2022. In
September 2022, we additionally checked the database of coronavi-
rus (sero)prevalence compiled by Cohen et al. (44) for studies that
we may have missed. We screened through the title and abstract of
all the resulting candidate studies (n = 340) and selected for full-text
review only those that seemed likely to contain quantitative infor-
mation on the prevalence of coronavirus RNA in samples collected
from wild bats (n = 151; table S1).

To be eligible for inclusion, the 151 candidate articles were re-
quired to comply with the following inclusion criteria. First, we con-
sidered only studies that used polymerase chain reaction–based
methods for the detection of coronavirus RNA in wild-caught
bats; studies reporting coronavirus seroprevalence and seropreva-
lence records within a study that reported both types of data were
excluded. Second, we required studies to contain information on the
location of sampling sites in sufficient detail to allow geo-referenc-
ing at a spatial resolution of ≤50 km2. If no GPS coordinates were
provided by the authors, but sampling localities were identifiable
based on place names, then we used the website www.asturnatura.
com/sinflac/calculadora-conversiones-coordenadas.php to retrieve
the geographical coordinates of sampling localities. In some in-
stances, no geographical coordinates or identifiable place names
were given, but sampling localities were instead visualized on re-
gional-scale (∼50 to 200 km) maps; in these cases, we inferred
their geographical coordinates through side-by-side comparison
with the same area on Google Maps. Third, we only included coro-
navirus presence/absence data generated from feces, fecal swabs,
anal swabs, or alimentary tract tissue; data generated from urine
samples or oral swabs were excluded, as detection probability of

Fig. 5. Estimated random host species effects on conditional prevalence (±2
SD) for East and Southeast Asian bat species. Bat species whose ranges are re-
stricted to East and Southeast Asia and for which coronavirus presence/absence
data from at least 10 individuals was available. The larger the values, the higher
the fraction of infected individuals in a given species if there is an infection in
the population. Negative values mean that even if virus is present in the popula-
tion, it tends to affect only few individuals. Species belonging to the family Rhino-
lophidae are in red. See table S4 for a list of the species, ordered by effect size,
included in this figure.
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coronavirus RNA from these materials is relatively lower (45). We
also excluded coronavirus presence/absence data generated from
pools of fecal samples; of coronavirus presence/absence or preva-
lence data calculated from samples of multiple species or anony-
mous species; and of presence/absence or prevalence data
calculated from individuals of the same species but sampled over
a large area (>50 km). We further excluded studies screening for co-
ronavirus nucleic acids in bats using a metagenomics/metatran-
scriptomic approach as well as reviews, editorials, and other
articles related to bats and coronaviruses but which did not
present primary data on coronavirus presence/prevalence in wild
bats. Of the 151 studies subjected to full-text revision (table S1),
74 met our selection criteria and were retained for data extraction
(table S2). In our database, each data point represents coronavirus
infection data (i.e., the fraction of coronavirus-positive bats) for in-
dividuals from the same species, sampled at a specific location and
at a specific time.

Statistical analysis
Observed prevalence
Observed prevalence summarized by continent (Fig. 1) and country
(fig. S1) was calculated using the epiR package in R v. 4.0.3 (46).
Model fitting
To assess the effect of human landmodification on the presence and
prevalence of bat coronaviruses, we fitted zero-inflated binomial lo-
gistic regression generalized linear mixed models with the R
package glmmTMB (v.1.1.4, TMB package v. 1.9.1, R v. 4.2.1) (19,
46, 47). Quantitative estimates of the intensity of human land mod-
ification for ~2017 were obtained from (15). We tested both the
overall human impact, which is calculated as the cumulative effect
of 14 anthropogenic stressors in the original study, and the effects of
stressors from five major categories: Bu, Ag, En, Tr, and In (fig. S2,
A to F). The following factors have been shown elsewhere to influ-
ence infectious disease dynamics at large spatial scales: climate (24,
48), biodiversity (23, 49–51), absolute latitude (52), and host phy-
logeny (53, 54). We included climate (55), mammal richness (as a
proxy for biodiversity; fig. S4A) (56), absolute latitude, and study ID
into the models for both the zero-inflation probability (i.e., the
probability of virus presence) and the conditional model (i.e.,
virus prevalence conditional on presence) to account for their po-
tential confounding effects. Two versions of the climate data were
considered: the original dataset (55), in which climate regions are
defined on the basis of both temperature and moisture regimes
(figs. S4B and S5 and table S5), and one where climate regions
were defined by temperature regime only (Fig. 4, Table 1, and
table S6).

In a preliminary model, we allowed for an additional random
genus effect on prevalence (conditioned on presence), but we
removed it for the final model as the estimated effects were negligi-
bly small and led to convergence problems in some variants of our
models. We allowed for possible random genus-level effects on
presence, that is, on the zero-inflation component of the model.
The categorical variables climate, host genus, host species, and
study ID were also modeled as random effects. All factors were re-
tained in the fitted model to correct for their expected confound-
ing effects.

For each data point, we interpret the zero-inflation probability of
the fittedmodel as the probability that the virus is absent in the pop-
ulation, and the fitted parameter p of the conditional binomial

distribution corresponds to virus prevalence in our application.
Note that a zero can appear in the data if a population is uninfected
or if the virus is present in the populations but, by chance, only un-
infected individuals were sampled. As CIs, we give two SE ranges on
the linear (link) scale, transformed to conditional prevalence ac-
cording to the logistic link function of the model. We calculated
quantile residuals for our fitted models conditioned on the inferred
random effects using the R package DHARMa v. 0.4.6 (57). With
quantile plots and bootstrapped outlier tests, we checked the distri-
bution assumptions for the quantiles and carried out Kruskal-
Wallis tests to check whether the residuals show any signal of con-
tinent, country, or the feeding guild of the bat species. As we find no
significant evidence of additional effects of countries or continents,
it seems plausible that our predictions apply, to some extent, also to
geographic regions from which we had no or few data points as long
as these regions are not systematically different from the sampled
region with respect to the other factors.
Significance test
We assessed the significance of human impact at a ~10-km2 grid-
cell resolution, first, by Wald tests of the inferred model coefficient
(as reported in R by the summary command for a model fitted with
glmmTMB) and, second, by a simulation-based likelihood ratio test
according to a parametric bootstrap approach. For the latter, we
fitted a null model without H10 (but with all other variables in)
to the data and simulated 1000 datasets according to the fitted
null model. Then, we refitted the null model and our alternative
model to each of the datasets and calculated the likelihood ratio.
The simulation-based P value is then (k + 1)/1001, where k is the
number of simulated datasets in which the likelihood ratio was at
least as large as the original data.
Model selection
We set up two models, model A, in which human impact has an
effect on both virus presence (i.e., the zero-inflation component
of the model) and prevalence (i.e., the conditional component of
the model), and model B, in which human impact has an effect
on virus prevalence, but not presence. The quantile residuals of
models A and B did not show any significant violations of model
assumptions. Model A fitted the data significantly better than a
null model without any effects of human impact (parametric boot-
strapping test, P = 0.007). Model B also explained the data signifi-
cantly better than the null model (parametric bootstrapping test,
P = 0.005), and there was no significant difference between
models A and B (parametric bootstrapping test, P = 0.31);
however, model B had the better Akaike information criterion
value (model B, 3446.24; model A, 3447.24; null model, 3455.40).
We here report model outcomes only for model B.

In model B, human impact showed a significant effect on prev-
alence (i.e., the conditional model; Wald test, P = 0.00078), but not
on the zero-inflation model, which describes the probability of the
absence of the virus in a local population (Wald test, P = 0.43;
Table 1). The residual diagnostics calculated with DHARMa did
not show any significant violations of model assumptions (boot-
strapped outlier test, P = 0.52). We found no evidence for associa-
tions of the quantile residuals with factors that we did not account
for in our model (Kruskal-Wallis test; P = 0.42 for continent,
P = 0.97 for country, and P = 0.55 for feeding guild). To check
for possible effects on higher taxonomic levels, we carried out a phy-
logenetic contrasts analysis (58) for the residuals of models A and
B. We applied the program contrast from the software package
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phylip v. 3.697 (58–60) through the interface provided by the R
package Rphylip v. 0.1-23 (61) to compare intraspecies variation
in the residuals to phylogenetic variation. For this analysis, we
used the bat phylogeny inferred by (62) and pruned to the 259
species that were in our dataset using the R package ape v. 5.6-2
(63). The within-species variance was estimated 0.0841 for model
A and 0.0832 for model B, and, in both cases, the phylogenetic
between-species component estimation was only 7 × 10−6 or 3 ×
10−6, respectively, and not significant (P = 1; the program phylip/
contrast reported slightly negative chi-square values of −0.044
and −0.1, presumably due to numerical imprecisions like rounding
errors).

To identify the anthropogenic stressor types that have the great-
est effect on bat coronavirus prevalence, we fitted five additional
models to our data. In each of these models, we replaced H10 as
explanatory variable for conditional prevalence by one of five
major stressor groups: Ag10 (agriculture and biological harvesting
of forests), Bu10 (urban and built-up), En10 (energy production
and mining), In10 (human intrusion, natural system modifications,
and pollution), and Tr10 (transportations and service corridors), all
at a 10-km2 resolution (fig. S2, A to E). To test whether the effects of
Ag10 and En10 mask each other in a model that contains both var-
iables, we set up a model that included both Ag10 and En10
(without H10). Last, we were interested to assess whether H10 as
a cumulative measure has effects that are independent of the indi-
vidual effects of Ag10 or En10. For this, we combined first Ag10,
then En10, with H10 in a model to test whether the latter loses its
significance when either of the former is included as separate
variables.

After multiple-testing correction, only Ag10 and En10 had sig-
nificant positive effects on conditional prevalence (Wald test, Bon-
ferroni-Holm corrected P < 0.0002 for both Ag10 and En10).
Additional testing confirmed that these two stressor types drive
the overall effect of H10. In a model with both Ag10 and En10,
the two effects did not mask each other, both variables were still sig-
nificant (Wald test, P = 0.0026 for Ag10 and P = 0.0044 for En10).
When we combined one of the two variables, Ag10 or En10, with
H10 in amodel, the effects of Ag10 and En10 were still significant (P
= 0.0073 and P = 0.0027, respectively), whereas H10 lost its signifi-
cance in both the model with Ag (P = 0.3000) and the model with
En (P = 0.0530).
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