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Duringrecent decades, pathogens that originated in bats have become anincreasing
public health concern. A major challenge is to identify how those pathogens spill over
into human populations to generate a pandemic threat'. Many correlational studies
associate spillover with changes in land use or other anthropogenic stressors>?,
although the mechanisms underlying the observed correlations have not been
identified*. One limitation is the lack of spatially and temporally explicit data on
multiple spillovers, and on the connections among spillovers, reservoir host ecology
and behaviour and viral dynamics. We present 25 years of data on land-use change, bat
behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical

Australia. These data show that bats are responding to environmental change by
persistently adopting behaviours that were previously transient responses to
nutritional stress. Interactions between land-use change and climate now lead to
persistent bat residency in agricultural areas, where periodic food shortages drive
clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared
to prevent spillover. We developed integrative Bayesian network models based on
these phenomena that accurately predicted the presence or absence of clusters of
spilloversin each of the 25 years. Our long-term study identifies the mechanistic
connections between habitat loss, climate and increased spillover risk. It provides a
framework for examining causes of bat virus spillover and for developing ecological
countermeasures to prevent pandemics.

Zoonoticspillover is the transmission of a pathogen fromanon-human
vertebrate to a human'. Spillovers of viruses from bats have resulted
inthe emergence and spread of viruses in the human population. For
example, SARS-CoV-2, SARS-CoV-1, Nipah and Hendra viruses have
caused human mortalities, sometimes after transmission through an
intermediate host>. Spillover of viruses from wildlife to humans has been
correlated withland-use change through studies that associate land use,
occurrence of spillover and presence of reservoir hosts, but without
datathat reveal the mechanisms'. In this long-term study, we observed
rapid changes in bat behaviour that coincided with the emergence of
Hendra virus. We found that bats were responding to environmental
change by persistently behaving in ways that were previously observed
astemporary responsesto climate-driven food shortages. We propose
that these behavioural shifts increased spillover risk by increasing
contact of bats with domestic horses, the intermediate hosts from
which Hendra virus spills over into humans, and by increasing viral
shedding from bat populations that have established outside their
normal winter range®. We developed and applied a Bayesian hierarchi-
cal network model to our 25 years of data on reservoir host ecology,
behaviour and spillover events (DataIndex inref.”). We identified distal

and proximal drivers of links between habitat loss, climate and spillover,
and predicted the risk of Hendra virus spillover inspace and time. The
Hendra virus systemillustrates a suite of ecological connections that
contribute to land-use-induced spillover of this pathogen: interactions
between land-use change and climate altered the behaviour of wildlife
reservoir hosts, increasing their proximity to domestic or human recipi-
ent hosts. We propose that this phenomenon, coupled with stressors
thatdriveincreased pathogen excretion®, leads to pathogen spillover.

Australian flying foxes (Pteropus spp., fruit bats) are reservoir hosts
of Hendravirus, ahenipavirusin the family Paramyxoviridae that does
not cause discernible disease in bats, but has a case fatality rate of 75%
in horses (84 fatalities documented) and 57% in humans (four fatali-
ties documented)®. Among subtropical Pteropodids, Pteropus alecto
(black flying fox) is the species most likely to excrete Hendra virus’.
Infected bats feeding in horse paddocks shed the virus in excreta or
spats that horses contact when grazing, leading to infection®°. Humans
are exposed through infected horses®. Hendra virus has probably cir-
culated in bats far longer than Europeans have occupied Australia™,
yet Hendraspillover was notidentified until 1994. After approximately
2006, the frequency of Hendravirus spillovers increased™. Forty one of
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Fig.1| Temporal and spatial distribution of documented Hendra virus

spillovers to horsesinthe Australian subtropics from1996 to 2020.

a, Distribution of spillovers across subtropical eastern Australiafrom 1996 to

present. The dotted blue line denotes our study area. b, Hendravirus spillover

the 63 spillovers documented toJanuary 2021 occurred in subtropical
easternAustralia2. The majority of spillovers occurred during the Austral
winter and were clustered in space and time (Fig.1and Supplementary
Information Section1).

Our research focused on spillover to horses in the Australian sub-
tropics, where Pteropus spp. primarily feed on nectar. Historically,
the bats were nomadic, moving among roost sites to track ephemeral
pulses of flowering by Eucalyptus spp. over hundreds of kilometres™™;
continuous occupancy of roosts was uncommon®. During summer,
many tree species that are abundant and widely distributed provide
food for bats'®. During winter, few tree species provide food for bats,
and the naturally limited distribution and abundance of these trees'
has been further restricted by clearing for urban development and
agriculture”®, Pulses of mass flowering in remnant forests leads to
a high proportion of the bat population becoming concentrated in
small areas, typically in coastal lowlands®. Loss of these winter food
sources can have severe impacts on the bat population’®”. When trees
that provide food in winter or spring do not flower, as occurs every1to
4 years owing to variation in temperature and rainfall'*?°, bats experi-
encebrief (typically 3to12 week) food shortages. They respond to the
shortages by roosting in small groups (population fission) close to
reliable but often suboptimal food in urban gardens and agricultural
areas (for example, fruit from ornamental, commercial or weed spe-
cies)*”%3 In the past, these behavioural responses persisted only for
the duration of acute food stress, and bats returned to nomadism and
nectivory when the food shortage abated”>**%,

Toinvestigate the relationships between land-use change, changes
inbat behaviour and spillover, we collected empirical data from 1996
t0 2020 within an area bounded by the locations of spillovers in the
subtropics (Fig.1a, Extended Data Fig.1aand Supplementary Informa-
tion Section 1). These data include the location and timing of Hendra
virus spillovers (Dataset A in ref. '), locations and occupancy of the
roosts (Datasets B,C)*¥, characteristics of the roosts and foraging
areas around the roosts (Datasets B,C,1)* %, climate (Dataset D in the
Data Index)’, nectar shortages (Dataset E)*°, measures of bat fitness
(Dataset F and G)***, flowering pulses during winter (Dataset J)** and
loss of winter foraging habitat (Datasets K,L and M in the Data Index”
and Supplementary Sections 1-13).

From1996 until approximately 2002, roosting and foraging behav-
iourswerestable, and no Hendravirus spillovers were detected (Figs.1
and2a,b). From approximately 2003 until 2020, bat behaviour and the
incidence of spillovers changed rapidly: the number of roosts tripled,
and 40 spillovers were detected (Supplementary Information Sections 1
and 3 andFigs.1and 2). From 2006 t0 2020, spillovers were detected in
80% of years, and 75% of spillovers occurred in annual clusters of three
or more (Fig. 1). Neither a change in the definition of a Hendra virus
casein horses in 2008, nor the availability of a horse vaccine in late
2012, explain the observed pattern of spillover events (Supplementary
Information Section1).

)
& Q-zf’

S O & & SR
F@ @0 P
Month

K3

by date of horse fatality from 1996 to present. Spillover events cluster in space
insomeyears. c, Hendravirusspillover by month. In the subtropics, spillovers
occur primarily during the Austral winter. The base-map was obtained from the
Australian Bureau of Statistics digital boundary files (www.abs.gov.au).

We used nectar productivity data from commercial apiarists and
measures of flying fox fitness to identify nine winter and spring food
shortages during the study period (Supplementary Information Sec-
tion7andFig.2a,b). During food shortages, the absence of nectar was
associated with a sharp increase in the number of bats admitted into
wildlife rehabilitation centres (at least 30 animals in amonth) and a
low percentage of lactating females with pre-weaning young (<79%;
Supplementary Information Section 7 (ref. *) and Extended Data Figs. 2
and 3). Food shortages followed all strong EI Nifio events (Oceanic Nifio
Index > 0.8),and also occurred independently of EINifio events (Fig. 2a).

Early inthe study period, the number of roosts was stable. Although
food shortages occurred, the bat population fission events were brief
(weeks), bats quickly returned to nomadism when the shortage abated
and the fission events were not captured in theroost counts. Following
this, the number of roosts increased in steps that coincided with food
shortages (2003,2007 and 2010) and then continued to increase stead-
ily (Fig. 2b). As the number of roosts increased, bats roosted in smaller
groupsthat were closer together and fed withinsmaller areas, and new
roosts formedinlocations thatincreased access to anthropogenic foods
inagricultural and urban areas (Fig. 3 and Extended Data Figs. 4 and
5a-c). We infer that fissioning of bat populations into smaller groups
near anthropogenic food reduces the energetic costs of foraging and
allows the bats to mitigate effects of nutritional and energetic stress®.
Whereas in the past, the behavioural response of bats to food short-
ages (population fission) persisted only for the duration of acute food
stress?*?*%, we observed the behavioural response becoming persistent
(Extended Data Fig. 4). To assess the mechanisms associated with the
rapid change in bat behaviour, we examined loss of winter foraging
habitat across far Southeast Queensland (Supplementary Information12
and Extended DataFig. 1b). Before European settlement, winter habitat
was extensiveinthis region (Extended DataFig. 5d). More than70% of the
forest that provided winter habitat was cleared before 1996, and clearing
continued at a constant rate (Extended Data Fig. 5e,g,h). In four of the
six years from1996 to approximately 2002, during which bat behaviour
was consistent and no spillover occurred, we recorded aggregations of
atleast100,000 nomadic bats associated with mass pulses of flowering
inwinter habitatin this region (Extended DataFig. 5f). By 2018, nearly a
third of the habitat that was presentin1996 had been cleared (Extended
DataFig.5e); the number of roost sites had increased fivefold (Extended
Data Fig. 4), with 87% of new roosts forming in urban areas. By 2020,
winter aggregations of atleast 100,000 in far Southeast Queensland had
been recorded once in 14 years (Extended Data Fig. 5f). Although bats
relocated to both urban and agricultural areas, most spillovers (86%)
occurred in agricultural areas (Fig. 3b), presumably because horses
were present at higher densities in agricultural areasthaninurbanareas.

We developed the parsimonious hypothesis that the combination of
acute winter/spring food shortages followed by a lack of winter flow-
ering in the following year yields the highest risk of spillover, espe-
cially from roosts in agricultural areas. We tested this mechanistic
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Fig.2|Relationships betweenclimate, periods of nutritional and energetic
stress for bats and Hendravirus spillovers. a, Temporal associationsamong
the ONI, acute food shortages (identified by apiarists) and winter spillovers.
Astrong EINifio event (ONI > 0.8) consistently led to food shortages the
following winter or spring, although food shortages can occurindependently
of ONI. During the early study period (1996 t0 2002), food shortages did not
lead toHendravirusspillovers; during the period of rapid change, when bat
populations were fissioning into urban and agricultural areas, food shortages
led to Hendra virus spillovers during the following winter.b, Number of roosts
inthestudy area. ¢, Timing of winter spillover eventsinrelation to the presence
oflarge aggregations (at least 100,000 bats) and productive flowering of diet
speciesinsoutheast Australiaduring winter (June to August). Each rowindicates
awinter for which data were available. Data are missing for winter aggregations
for1999,2003,2004,2006,2008 and 2014 (Supplementary Table 5a).

hypothesis with a multiscale Bayesian network model**. We included
six variables: strong El Nifio events (Oceanic Nifio Index > 0.8), food
shortages, winter-flowering pulses, land cover within the foraging areas
of winter colonies of P. alecto, population fissioning (establishment of
new roosts) and number of Hendra virus spillovers (Supplementary
Information Section13 and Supplementary Fig.1). We validated the pre-
dictive ability of the network model with leave-one-out cross-validation
and expected log pointwise predictive density. We verified this by using
aleave-one-out cross-validation for model selection with more than
1,000 simulated datasets (Supplementary Information Section 13).
The best model supported that spillover clusters occur following a
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Fig.3| Thedistribution of Pteropus alectoroosts during winter. a, Expansion
ofthenumber and distribution of roosts occupied by Pteropus alecto during
winter from1998t02019. The base-map was obtained from the Australian
Bureau of Statistics digital boundary files (www.abs.gov.au). b, Proportion of
theforagingarea surrounding roosts that was classified as built, forested or
agricultural (Supplementary Information13). Thered circles indicate roosts
that were the sources of winter spillovers.

sequence of events over three successive years. First, itindicated that
strong El Nifo events preceded food shortages, and food shortages
coincided with population fissioning (Fig. 4a, Extended Data Figs. 6-8
and Supplementary Tables 7-9). Second, the greatest likelihood of
spillover from a given roost was associated with P. alecto feeding in
agricultural areas during a winter that followed an acute food short-
age, butinwhich there was no pulse of flowering (0.014, 0.126 highest
posterior density probability interval; Fig. 4b). By contrast, the pres-
enceof apulse of winter flowering that attracted at least 100,000 bats
mitigated spillover risk (0.000, 0.026 probability interval; Fig. 2c and
Fig. 4b, Extended Data Fig. 9 and Supplementary Table 5).

We used the model to make probabilistic predictions of whetheraclus-
ter of spillovers (defined as three or more spillovers) would occur inthe
study area from 1996 to 2021. We used all available information up toa
giventime point, starting with2013 (Fig. 4c and Extended Data Fig.10a,b).
Forexample, to predictacluster of spilloversin2020 (Fig. 4d and Extended
DataFig.10c), we used information collected to theend 0of2019.Inall cases,
model predictions were consistent with observations of the presence or
absence of clusters of spilloversinthe context of winter flowering. We also
verified the predictive ability of our model with fivefold cross-validation;
our model accurately predicted the presence or absence of a cluster of
spilloversin each of the 25 years in the data (Extended Data Fig. 8).

These data document increasing rates of transmission of a fatal
zoonoticvirusinarapidly changing anthropogenic system. Our work
suggests that previously transient fissioning of bat populations in
response to periods of food shortage has become persistent. This
behavioural response leads to the increased use of agricultural and
urban areas by batsinwinter (Fig. 3). Food shortages occurred through-
outthe 25-year study period (Fig.2a,b), probably driven by the lagged
effects of climate on Eucalyptus flowering?°. However, spillovers were
notassociated with food shortages until bats persistently overwintered
inagricultural areasin proximity to horses, and winter-flowering pulses
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scenarios of land use under the condition of afood shortage followed by no
winter-flowering pulse. Other, collates all other scenarios of the presence and
absence of food shortages and flowering pulses. The circles are maximum

became less frequent (Figs. 2c,3 and 4a). We propose that the loss of
winter-flowering habitat and consequent decline in the abundance
of winter nectar contributes to the persistence of bats in agricultural
and urban areas (Supplementary Information Section 12, Fig. 2c and
Extended DataFig.5d-h). The consequences of more batsin areas with
humansettlementsincludenotonlyincreasedrisk of viral spillover from
bats to horses to humans, but also increased conflict with humans™®.

The contemporary association between food shortages, population
fission and spillover may be explained by both increased proximity of
bats and horses, and physiological stress in novel winter habitats. Bats
inrooststhatrecently formed outside of the historic winter range of the
species excreted more Hendravirusinwinter, especially after food short-
ages, than bats in roosts within the historic winter range of the species®.
Batsinurbanandagricultural areas rely on suboptimal food, which may
lead to nutritional stress that facilitates viral shedding®**. Nutritional
stress has been linked to infection and shedding of Hendra virus**,
coronaviruses*® and other viruses inreservoir host systems*; moreover,
Hendravirusspillover eventsin the subtropics have beenassociated with
small roosts with limited access to native food®. The timing of Hendra
virus spillover clusters in winter, months after the food shortages in
the previous year, may be owing to the cumulative effects of nutritional
stress overlaying high energy requirements in winter (thermoregula-
tion and pregnancy) and scarce resources within suboptimal habitats.
Although the time-lag between food shortages and spillover requires
further investigation, we suggest that the processes driving spillover
of Hendra virus are general phenomena that link land-use change and
pathogen emergence: behavioural responses to loss of habitatincrease
contact with recipient hosts, and physiological and immunological
responses to food limitation increase pathogen excretion®.

Observation Model predictions
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aposteriori point estimates, and the bars are 95% highest posterior density
credibleintervals. ¢, Predicted probability of a cluster of spilloversin each year
from2013t02021. Predictions for agiven year were made with all observations
to thatdate; information from future years was notincorporatedinto
predictions.In2017 and 2013, food shortages in the year before and no
winter-flowering pulse led to elevated risk of spillover, whereas in the other
years, no clusters of spillovers were predicted. All predictions were consistent
withtherealized dataonthe absence (open circles) or presence (closed circles)
of clusters of spillover. d, Predictive probability of a cluster of spilloversin
winter 2020, following afood shortage in 2019. A winter-flowering pulse
occurredinearlyJuly2020 and no winter spillovers were observed. We
predicted thata cluster of spillover events would have occurredif there had not
beenafloweringpulse.

Our data suggest that increasingly rare winter-flowering pulses
reduce the risk of spillover. Bats reverted to nomadism and left agri-
culturaland urban areas during pulses of winter flowering in remnant
native forest, and spillovers did not occur during these flowering
pulses (Fig. 2c). We propose that these pulses of flowering may mitigate
zoonoticrisk by drawing large numbers of bats (Supplementary Infor-
mation Section 11 (ref. %)) away from feeding in agricultural areas and,
therefore, decreasing contactbetween bats and horses. Thisnomadism
may also reduce competition for food among the bats that remainin
agriculturalareas. Understanding these mechanisms requires further
work. Nevertheless, the loss of native forest that supports large aggre-
gations of nomadic bats appears to be fundamental to the cascade of
events that lead to spillover. An extensive programme of ecological
protection and restoration of winter-flowering forests (ecological
countermeasures) could be asustainable, long-term strategy toreduce
spillover and protect the health of livestock and humans*.

The consistent temporal association of Oceanic Nifio Index (ONI)
thresholds with food shortages and spillover events allows for the
prediction of spillover clusters up to two years in advance through
surveillance of climate, or alternatively, one year in advance through
surveillance of bat reproduction and bat admissions to wildlife
rehabilitation centres (Fig. 4c). However, we cannot as yet predict
winter-flowering pulses, and these must be monitored in real time.
For example, the conditions leading into winter 2020 suggested that
multiple spillover events would occur (Fig. 4d). However, we were una-
ble to predict the pulse of winter flowering that attracted more than
200,000 bats that appears to have prevented winter spillovers. With
retrospective information on flowering, our Bayesian network model
correctly predicted the absence of a cluster of spillover eventsin 2020.
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Prevention of spillovers requires characterization of the interac-
tions of reservoir and recipient species with their environment in the
context of rapid land-use change and climate variability. Monitoring of
ecological processes that occur at different temporal extents, including
those longer than natural climatic cycles such as EINifio, is essential to
understanding the drivers of spillover. Yet long-term data on reservoir
hosts, especially bats, are sparse*’. Many bat species that are the reser-
voir hosts of zoonotic pathogens depend on ephemeral resources, and
occupy ecosystems in which loss of native vegetation, high livestock
density and human populations coincide***¢. Moreover, some bat spe-
cies can adapt to human-modified landscapes to mitigate the effects
ofloss of their native habitat. These species may present greater risks
of spillover, as has been observed in other wildlife taxa*’. We identi-
fied key processes connecting land-use change to spillover through
behavioural responses of bats to altered food availability. We suggest
that behavioural and physiological responses to rapid, human-induced
environmental change increased contact between reservoir hosts and
recipient hosts, and increased shedding of pathogen® within proximity
of recipient hosts. This study, therefore, suggests ageneral framework
for examining causes and potential ways to mitigate bat virus spillover
inregions without long-term data on reservoir hosts.
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Extended DataFig.1|Boundaries oftheHendra virusstudy areaand boundary (circles, Database A)'; and the 2018 distributions of built land use
Southeast Queensland study areawithlocations of Hendra virus spillovers (lightred, Supplementary Information 9) and extant winter foraging habitat for
tohorsesindicated. (a) The full study areawith locations of subtropical flying foxes (green, Supplementary Information12). Base-maps were obtained

Hendravirus spillovers (circles, Database A)'?; (b) The far Southeast Queensland fromthe Australian Bureau of Statistics Digital boundary files (www.abs.gov.au).
(SEQ) study areashowing the Hendravirus spillovers documented within the
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Extended DataFig.2|Measures of flying fox fitnessidentified asimportant  distribution were consistentbetween the NRregion and the full study area.
proxies offood shortage inregression tree model. (a) index of reproductive Box plots show median values, upper and lower quartiles and all data points.
output:annual estimates of the percentage of adult females occupying roosts (b) monthly counts of admissions to Northern Rivers WIRES wildlife

inthe NorthernRivers (NR) region (light grey) and throughout the Hendra rehabilitation center with months classified as nectar shortage by apiary data
virus study area (black) carryinglive young pre-weaning; dataare grouped (indicated by orange bars). No intake records were available fromJune 2003
accordingtowhetheraperiod of nectar shortage was recorded by apiarists through December2005. The bounds of the box correspond to the 25" and 75"
during the winter or spring associated with that birth cohort (n =9 years) percentiles, the middle dashis the median, and the whiskers extend to the
versus cohorts when anectarshortage was not recorded (n =14 years). Data largestvalue no further than 1.5 times the interquartile range from the 25" or
acquiredinyears of food shortage were widely dispersed relative to highly 75" percentile.

clustered dataacquiredinyears without food shortage. Patterns of data
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Minimum (Percent with Young) >= 79

Extended DataFig. 3 |Regressiontreefitforidentifying flying fox food rehabilitation centers were >30 individuals and minimum proportion of female
shortages (as assessed by absence or very low nectar production). Food flying foxes with young pre-weaning was <79%.
shortages were predicted when monthly flying fox intakes into wildlife
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intoagricultural areas. Although the number of winter roostsinurban areas
increased substantially, the total area of built land in combined foraging areas
did not. (d) Distribution of key winter habitat in the southeast Queensland
study area (SEQ): pre-clearing, at the start of the study in1996 and at the end
ofthe study in 2018. (e) Percentage of pre-clearing winter habitat remaining
(note that the y-axisis compressed). (f) Abundance of batsin the largest winter
roosts within SEQ. Aggregations >100,000 were common pre-2005, rare after
2005, and noneoccurred from 2011t0 2020. (g) Annual rate of clearing of key
winter habitatinthe SEQstudy areal996-2018, the line is a LOESS best fit.
Gray shadingindicates 95% confidence intervals and (h) Cumulative area
cleared (ha).



40

33

P
020 O OO

-

Extended DataFig. 6 | A total of 64 different plausible network models were
assessed using expected log pointwise predictive density (ELPD) and
leave-one-out (LOO) cross-validation for predictive validation. (a) The
figure containsthe best network, Model 36 (top), plus all of the other networks
within10 leave-one-outinformation criteria (LOOIC) units of Model 36.
Thenodelabels are abbreviated; spillis spillover, roost is roost fissioning,

land useistheland usetype attheroostlevel, shortisafoodshortageinthe
previous year, pulse is awinter flowering pulse, and ONlis elevated ONI over

b wme4-

M63 =
M62
M61
M60 —
M59 7
M58 =
M57 4
M56 = —
M55
M54 9
M53 —
M52 5 -
M51 9 I
M50
M49 = —
M48 9
M47 9 —
M46 T
M45 =
M44 =
M43 =
M42 = —
M41 9 ——
M40 —
M39
M38
M37 9
M36
M35 =
M34 5 —
M33 =
M32 9
M31 9
M30 7
M29
M28
M27
M26
M25
M24 9
M23 7
M22 5
M21 9
M20 =
M19 9
M18 9
M17 9
M16
M159
M14 9
M13 9
M129
M119
M109

M9 A

M8

M7 7

M6

M5

M4 9

M3

M2 7

-???HHH*?HTH?%?HH?H?H?HH&

model
oo
% (]|

|

HHHHHHHHHHHHHHH%HHHHHHHHHHT

I
i

B

o
N
(&)
(o))
o
~
(&)

A (LOOIC)

0.8two years prior. (b) Distribution of LOOIC values relative to Model 36.
Foreachmodel, the boxplots (n =1000 simulations) show the distribution
ofthe differencein LOOIC.M36is the favored model as the median, and at
least thefirst quartile, are positive for all other models. The bounds of the box
correspond to the 25" and 75" percentiles, the middle dash is the median,

and the whiskers extend to the largest value no further than1.5times the
interquartile range from the 25" or 75" percentile.



Article

a

as a function of Food Shortage
roost fission | shortage

Posterior Distribution of Average Number of New Fissioned Roosts

density

roost fission | no shortage
[} 10 [} 10 20 EQ

density

20 30
Distribution of new fissioned roosts

Posterior Distribution of Winter Flowering Pulse
pulse = 1 pulse = uk

pulse =0

d
shortage | ONI >.8

1.000.00 025 050 0.75 1.00

0000 025 050 075
Probability of winter pulse

000 025 050 0.75 1.0

Posterior Distribution of
Agricultural

Land Use Characterization

Forest Urban

density

050 0.75 1.00

1.000.00 025 0.50 0.75 1.000.00 0.25

000 025 050 075
Probability of land use categorization

Posterior Distribution of Food Shortage Probability as a function of ONI

shortage | ONI <.8

density

0.50 0.75 1.00

0.25 0.50 0.75 1.00 0.00 0.25

0.00
Probability of food shortage given ONI > 0.8 in previous year

Posterior Distribution of ONI > 0.8

1.00

density

0.00 0.25 0.50 0.75
Probability of ONI > 0.8
Extended DataFig.7 | Posterior distributions for model parametersin
Bayesian Network Model. (A) posterior distribution of new fissioned roosts,
conditional onfood shortage events. (B) posterior distribution for the
probability of awinter flower pulse. (C) posterior distribution for the
probability of aroost having the three different land use characteristics.
(D) posterior distribution for the probability of afood shortage given elevated
ONIlvalues. (E) the posterior distribution for the probability of elevated

ONlvalues.



1996 1997 1998 1999 2000

11 11 11 11 1
3 3 3 3 3
© © © © ©
Qo Qo Qo Qo Qo
[< [<] <} < <
o o o o o
0 1 T T 0 1 T T 0 L T T 0 L T T 0 1 T T
No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster
2001 2002 2003 2004 2005
1 11 11 11 11
£ £ £ £ £
a o el a a
© © © [} ©
Qo Qo Qo Qo Qo
[ [ < < [
o o o o o
0 L T T 0 1 T T 0 L T T 0 L X T 04 T T
No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster
2006 2007 2008 2009 2010
11 11 11 11 1
S il el ° °S
© © © © ©
Qo e Qo Qo e
< [ [ < [
[N o o o o
0 1 T T 0 1 T T o L T T 0 L T T 0 1 T T
No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster
2011 2012 2013 2014 2015
1 1 1 11 1
a a S 8 8
© © © © ©
Qo Qo Qo Qo o
[< [ < < [<
o o o o o
o] N ol [ —— o [ I |
No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster
2016 2017 2018 2019 2020
14 14 14 14 19
o o o a a
© @ © © ©
Qo Qo Qo o o
< [ < < <
o o o o o
04 I— — 0 T—— 04 I 04 I 04 I —
No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster No Cluster Cluster
Extended DataFig. 8| Output from 5-fold cross validationstudy to assess roost-level predictions are made using models fit on roosts-year combinations
the ability of our model to predictspillover clusters. Thered bars fromother folds. This approach provides strong evidence of the predictive

correspond towhether acluster of spillovers was observed in thatyear and the ability of the model framework as it predicts, with high certainty, the presence
grey bars and number correspond to predicted probabilities. Foragivenyear, orabsence of clusters of spilloversinall 25 years.



Article

N

N
o

{

Eucalyptus tereticornis
E. robusta, E. siderophloia,
Melaleuca quinquenervia

E. albens

Corymbia maculata:
March-June

C. maculata:
May-August
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outlines). (b) Predicted probability for acluster of spillovers (grey bars, defined
asthree or more spillovers) and the observed presence or absence of a cluster
of winter spillovers (red outlines). Inboth figures, predictions are made using
allobserved dataup to that time, butinformation from future yearsis not
incorporatedinto predictions. The period of 2016 through 2021 was chosen for
probabilistic predictions because enough preceding data allowed predictions.
Food shortages were seen preceding years 2017 and 2020, but only the year
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2017 included both afood shortage and alack of awinter flowering pulse. All
the predictions are supported by therealized data, which fallin higher mass
parts of the distributionsin (a) and align with predictions with high predicted
probabilitiesin (b). (c) Predictive distribution of the total number of spillovers
inwinter 2020, following afood shortagein 2019. The grey barsindicate the
spectrum of probabilistic predictions for spillover, given a winter flowering
pulse. Awinter flowering pulse did occurin early July 2020 and no winter
spillovers were observed (pink outlined bar). Had no flowering pulse occurred,
we predicted many more spillover events (yellow bars).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
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A description of all covariates tested
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection  no software was used

Data analysis Data are analyzed with R (version 4.2.1), R packages: tidyverse, rpart, rattle, rstan, HDInterval, loo, bnlearn, ggridges, ggtern. Data also
analyzed with Stan version 2.26.1. Code provided in Supplementary Information and in eCommons repository. Details are provided in Eby,
Peggy, Alison Peel, Andrew Hoegh, Wyatt Madden, John Giles, Peter Hudson, and Raina Plowright (2022) Data and scripts from Pathogen
spillover driven by rapid changes in bat ecology. Food shortage regression tree model [Dataset]. Cornell University eCommons Digital
Repository. https://doi.org/10.7298/rdbe-cy49 and Eby, Peggy, Alison Peel, Andrew Hoegh, Wyatt Madden, John Giles, Peter Hudson, and
Raina Plowright (2022) Data and figure from Pathogen spillover driven by rapid changes in bat ecology. Bayesian network model [Dataset].
Cornell University eCommons Digital Repository. https://doi.org/10.7298/yOnr-e545
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The datasets generated and analyzed during the current study are available in the Cornell University eCommons Digital Repository or they are available as open
access files. The URLs are provided in the Data Index https://doi.org/10.7298/pjjb-3360, with the exception of records from commercial apiarists (Supplementary
Information Section 7) that are constrained by commercial in-confidence considerations. Dataset URLs: Dataset A: https://doi.org/10.7298/3dbp-t721; Dataset B:
https://doi.org/10.7298/kdht-sp38; Dataset C: https://doi.org/10.7298/ajmw-mp18; Dataset E: https://doi.org/10.7298/tb5p-dro8; Dataset F: https://
doi.org/10.7298/j3g2-gw32; Dataset G: https://doi.org/10.7298/3vha-5m37; Dataset I: https://doi.org/10.7298/x71e-c660; Dataset J: https://doi.org/10.7298/
rmhz-dc23.
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Ecological, evolutionary & environmental sciences study design
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Study description This work brings together multiple datasets that were collected over 25 years. The Data Index supplies a summary of datasets and
how to access them: Eby, P. et al. Data from Pathogen spillover driven by rapid changes in bat ecology. Data Index. Cornell University
eCommons Digital Repository. doi:https://doi.org/10.7298/pjjb-3360 (2022).

Research sample Extensive data collection on spillover, flying fox population dynamics, flying fox movement, Oceanic Nino Index, apiary records,
animal intakes into rehabilitation organisations, reproductive output, foraging data, foraging area characteristics (land cover and land
use), winter flowering pulses (bat aggregations), habitat clearing. See Data Index (above)

Sampling strategy n/a

Data collection See Data Index for the sources of data (doi:https://doi.org/10.7298/pjjb-3360). The field data was collected by P. Eby.

Timing and spatial scale  See Data Index for the temporal and spatial scale associated with each dataset (doi:https://doi.org/10.7298/pjjb-3360).

Data exclusions The extent of the study area was defined after the 2011 Hendra virus outbreaks in the subtropics. The study area encompassed all
detected Hendra virus spillovers in the subtropics at that time, including the feeding areas of the associated flying fox roosts. This is

described in the supplementary information and supplementary methods. Ongoing data collection was focused within this study
area. See Supplementary Information.

Reproducibility No experiments were performed.
Randomization n/a
Blinding n/a

Did the study involve field work? Yes [ |No

Field work, collection and transport

Field conditions Observations of reproductive output were performed during the same week each year; see supplementary methods and
information. Census and population counts of flying fox populations were performed.

Location Subtropical Australia, see Supplementary Table 2.
Access & import/export  n/a

Disturbance n/a

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants
|:| Clinical data

[ ] pual use research of concern

XX O KXXX S

Human research participants

Policy information about studies involving human research participants

Population characteristics Participants in the nectar monitoring research met at least one of the following criteria:
1) apiarists that manage substantial enterprises (hundreds of hives); 2) active members of industry support groups (federal,
state and local industry associations, government advisory personnel) and 3) honey packers to whom apiarists sell their
products. No other characteristics were considered

Recruitment Recruitment occurred in the following steps. Potential participants were identified via the recommendations of: office

holders of federal, state and local industry support organizations, government advisory personnel, and existing participants.

Researchers contacted potential participants directly to confirm they met criteria for participation (above) and agreed to
provide information on nectar production as set out in the methods of the study. Finally, participants were required to
provide informed consent under the Griffith University Human Research Ethics Committee. approval (below).

Ethics oversight The Griffith University Human Research Ethics Committee (GUHREC) approved the study protocol (GU Ref No: 2022/765)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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