

This work was funded with the generous support of the American people through the Leader with Associates Cooperative Agreement No.EPP-A-00-06-00014-00 for implementation of the TransLinks project. The contents of this report are the responsibility of the author and do not necessarily reflect the views of the United States government.

#### **Forest Conservation and Slippage:**

#### **Evidence from Mexico's National Payments for Ecosystem Services Program**

Jennifer M. Alix-Garcia, Elizabeth N. Shapiro and Katharine R. E. Sims



Provided by the Land Tenure Center. Copyright with authors. Comments encouraged:

Land Tenure Center, Nelson Institute of Environmental Studies, University of Wisconsin, Madison, WI 53706 USA *kdbrown@wisc.edu;* tel: +608-262-8029; fax: +608-262-0014 http://www.ies.wisc.edu/Itc

#### THE IMPACT OF PAYMENTS FOR ECOSYSTEM SERVICES ON DEFORESTATION IN MEXICO: PRELIMINARY LESSONS FOR REDD

#### Jennifer M. Alix-Garcia

Agricultural and Applied Economics, University of Wisconsin, Madison

#### Elizabeth N. Shapiro

Nicholas School of Environment, Duke University

#### Katharine R.E. Sims

Economics/Environmental Studies, Amherst College

# Thank yous

- We are grateful to Stefano Pagiola (WB) and to all the people at the Mexican National Forestry Commission (CONAFOR) who have helped us, including but not limited to:
- Gerencia de Servicos Ambientales:
  - Ing. Leonel Iglesias Gutiérrez
  - José Armando Alanís de la Rosa
  - Paola Bauche Petersen
  - Gemelina Ramírez
  - Jesús Gutiérrez Cacique
  - Rodolfo Valdez Garcia
  - Silvia Martinez



- Gerencia de Inventario Forestal y Geomática:
  - Rigoberto Palafox Rivas
  - Carmen Meneses Tovar

## Motivation: PES and REDD

- Changes in land use account for 15-20% of greenhouse gas emissions worldwide
- Many countries experimenting with "PES" as a way to achieve "REDD" goals:
  - PES = payments for ecosystem services
  - REDD = reducing emissions from deforestation and forest degradation
  - Mexico, Costa Rica, China, Ecuador, Vietnam, Brazil...

### Does PES reduce deforestation?

- Empirical evidence to date is limited:
  - See recent reviews by Pagiola and Xiang 2010, Pattanayak, Wunder and Ferraro REEP 2010
- □ Two main concerns:
  - 1) PES might be selecting landowners who would have conserved even in the absence of payments
  - 2) Effectiveness could be undermined by spillovers of deforestation to other areas

### Paper preview:

- Analyze deforestation among recipient properties in comparison to a plausible counterfactual group
  Significant but small avoided deforestation gains for 2004 PSAH
- Develop a theoretical framework, which suggests that in an imperfect markets setting, deforestation may spill over:
  - Within properties as recipients invest the transfers into new production
  - Between properties as output prices increase from reductions in potential agricultural land, or from income effects
- Test empirically for evidence consistent with these spillovers

# Mexico's PSAH – program

- Payments for Hydrological Services
  - Began in 2003
  - Goal: prevent deforestation in order
  - to improve hydrological services
  - 5 year contracts
  - Yearly payments contingent on no deforestation
  - Random monitoring both by satellite and field visits





# Estimating impact

PSAH 2004 y Controles Potenciales



Draw controls from applicant pool

- Rejected properties, future enrollees
- Ensures controls are similar with respect to a key unobservable: desire to enroll in the program
- Match enrolled properties to controls
  - Adjust for remaining differences
    - Bias-adjusted matching estimator

Covariates include: parcel area, stopesaind elevation, vegetation type (% semi-deciduous, % selva), region, access to market (density of roads in a 50 km buffer), type of property (communal/private)

### Measuring deforestation is hard!

- Two indicators of deforestation:
  - Monitoreo Forestal (2003-2006)
    - Based on MODIS satellite data (250 m resolution)
    - National coverage from CONAFOR, calibrated by them using field data from National Forest Inventory
    - NDVI change = deforestation *indicator*
    - Tobit to correct for censoring
  - Imágenes SPOT (2003 2005 or 2006)
    - Manually selected and interpreted SPOT images (10 m resolution)
    - Coverage is limited by availability of images
    - Phenology a significant problem: deforestation indicator

We calculated deforestation indicators for both recipient and control parcels:

- Inside the parcel (yellow)
- In 1km and 5km buffers around the parcel
- And/ or inside the boundaries of the property (if a common property)



#### Data – summary statistics

#### Table 3: Summary statistics on recipients and non-recipients (best 80% matches)

| Variable               | Recipients | Non-       | Test for   | Normalized |
|------------------------|------------|------------|------------|------------|
|                        |            | Recipients | difference | difference |
| Enrolled area          | 5.53       | 5.78       | .40        | 002        |
| Proportion ejidos      | 0.65       | 0.595      | 1.46       |            |
| Average slope of       | 2.46       | 2.45       | 0.216      | 0.013      |
| enrolled area          |            |            |            |            |
| Average elevation of   | 2.19       | 2.11       | 1.25       | 0.06       |
| enrolled area          |            |            |            |            |
| Proportion enrolled    | 0.192      | 0.237      | 1.55       | -0.16      |
| area semideciduous     |            |            |            |            |
| Proportion enrolled    | 0.316      | 0.275      | 1.34       | 0.13       |
| area selva             |            |            |            |            |
| Ln(road density)       | 6.70       | 6.64       | 1.32       | 0.083      |
| Proportion in region 1 | 0.215      | 0.273      | 1.69       |            |
| Proportion in region 2 | 0.159      | 0.220      | 1.99       |            |
| Proportion in region 3 | 0.361      | 0.326      | 0.98       |            |
| Proportion in region 4 | 0.263      | 0.182      | 2.52       |            |
| Proportion with        | 0.223      | 0.252      | 0.55       |            |
| suspected              |            |            |            |            |
| deforestation          |            |            |            |            |
| Ln(1+area deforested)  | 0.040      | 0.073      | 2.45       |            |
| Observations           | 341        | 315        |            |            |

#### Impact analysis results

Significant but small reduction in indicated deforestation

Bias adjusted matching estimator (Table 4)

|                       | Mahalonobis metric       |                |                     |  |
|-----------------------|--------------------------|----------------|---------------------|--|
| Dependent<br>variable | Ln(1+area<br>deforested) | Deforest (0/1) | Ln(1+area<br>defor) |  |
|                       |                          |                | Deforest > 0        |  |
| <b>T</b> ( )          | (1)                      | (2)            | (3)                 |  |
| effect                | 0488***                  | 105**          | 1136**              |  |
|                       | (-3.169)                 | (-2.459)       | (-1.973)            |  |
| Observations          | 656                      | 656            | 160                 |  |

#### Regression with controls for observables (Table 6)

| Marginal effects |        |
|------------------|--------|
| Pr(d>0)          | 063**  |
|                  | (.031) |
| Ln(d d>0)        | 020**  |
|                  | (.009) |

### Economic framework: spillovers

- Insights from Wu 2000, Roberts and Bucholtz 2005
  - Adapting to developing country context: imperfect mkts
- Simple household model
  - Households allocate land to forest or agriculture
  - Ag production requires a variable input
  - Some households are credit constrained
- PES program gives payment conditional on no deforestation in some parcels of land
  - Limits land that can be transformed into agriculture

## Two types of spillovers

Substitution (within property):

- Landowner removes one parcel from potential production; shifts production to another parcel
- $\rightarrow$  Observable where markets are imperfect
- Output price effects (across property):
  - Supply side: removal of multiple parcels from production increases market prices of agricultural goods
  - Demand side: payments increase incomes and consumption, increases market prices of agricultural goods
  - $\rightarrow$  Observable where markets are localized

## Spillover estimation

#### Substitution spillovers:

- Use matching to assess if more deforestation in non-enrolled areas of common properties
- Or in 1km and 5km buffers
- Price spillovers:
  - More deforestation where there is greater regional enrollment in the PSAH program? (ha enrolled within a 50 km buffer)
- Yes: see paper

#### Conclusions: Lessons for REDD?

- 1. PSAH program produced a significant but small avoided deforestation impact
  - Early cohort, little targeting on risk
- 2. Impacts vary by region and quality of infrastructure
  - Additional analysis could improve targeting
- 3. Evidence consistent with both substitution and price spillovers
  - Important to accounting for REDD at the regional or national level, not project-based approach
- 4. Annual national deforestation monitoring systems urgently needed—much to learn from Mexico's system